Applying Variant Variable Regularized Logistic Regression for Modeling Software Defect Predictor
نویسندگان
چکیده
منابع مشابه
Simulation-based Regularized Logistic Regression
In this paper, we develop a simulation-based framework for regularized logistic regression, exploiting two novel results for scale mixtures of normals. By carefully choosing a hierarchical model for the likelihood by one type of mixture, and implementing regularization with another, we obtain new MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the d...
متن کاملEfficient L1 Regularized Logistic Regression
L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many pract...
متن کاملCategorical Data Modeling: Logistic Regression Software
A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observation...
متن کاملDistributed Newton Method for Regularized Logistic Regression
Regularized logistic regression is a very successful classification method, but for large-scale data, its distributed training has not been investigated much. In this work, we propose a distributed Newton method for training logistic regression. Many interesting techniques are discussed for reducing the communication cost. Experiments show that the proposed method is faster than state of the ar...
متن کاملRegularized Logistic Regression Fusion for Speaker Verification
Fusion of the base classifiers is seen as the way to achieve stateof-the art performance in the speaker verfication systems. Standard approach is to pose the fusion problem as the linear binary classification task. Most successful loss function in speaker verification fusion has been the weighted logistic regression popularized by the FoCal toolkit. However, it is known that optimizing logistic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes on Software Engineering
سال: 2016
ISSN: 2301-3559
DOI: 10.7763/lnse.2016.v4.234